Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves.

نویسندگان

  • Marie Hronková
  • Dana Wiesnerová
  • Marie Šimková
  • Petr Skůpa
  • Walter Dewitte
  • Martina Vráblová
  • Eva Zažímalová
  • Jiří Šantrůček
چکیده

The initiation of stomata, microscopic valves in the epidermis of higher plants that control of gas exchange, requires a co-ordinated sequence of asymmetric and symmetric divisions, which is under tight environmental and developmental control. Arabidopsis leaves grown under elevated photosynthetic photon flux density have a higher density of stomata. STOMAGEN encodes an epidermal patterning factor produced in the mesophyll, and our observations indicated that elevated photosynthetic irradiation stimulates STOMAGEN expression. Our analysis of gain and loss of function of STOMAGEN further detailed its function as a positive regulator of stomatal formation on both sides of the leaf, not only in terms of stomatal density across the leaf surface but also in terms of their stomatal index. STOMAGEN function was rate limiting for the light response of the stomatal lineage in the adaxial epidermis. Mutants in pathways that regulate stomatal spacing in the epidermis and have elevated stomatal density, such as stomatal density and distribution (sdd1) and too many mouth alleles, displayed elevated STOMAGEN expression, suggesting that STOMAGEN is either under the direct control of these pathways or is indirectly affected by stomatal patterning, suggestive of a feedback mechanism. These observations support a model in which changes in levels of light irradiation are perceived in the mesophyll and control the production of stomata in the epidermis by mesophyll-produced STOMAGEN, and whereby, conversely, stomatal patterning, either directly or indirectly, influences STOMAGEN levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll.

Plants, as sessile organisms, must coordinate various physiological processes to adapt to ever-changing surrounding environments. Stomata, the epidermal pores facilitating gas and water exchange, play important roles in optimizing photosynthetic efficiency and adaptability. Stomatal development is under the control of an intrinsic program mediated by a secretory peptide gene family--namely, EPI...

متن کامل

Drought induces alterations in the stomatal development program in Populus

Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal con...

متن کامل

The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones.

Stomatal development in plants is regulated by defensin-like secretory epidermal patterning factor (EPF) peptide hormones. Only one of these, stomagen, is a positive regulator, whereas EPF1, EPF2, and possibly others are negative regulators. Here we explore the structure-function relationships of EPFs, by integrating NMR and semi-in vitro stomagen experiments. We show that stomagen is composed ...

متن کامل

Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement.

Green light reversal of blue light-stimulated stomatal opening was discovered in isolated stomata. The present study shows that the response also occurs in stomata from intact leaves. Arabidopsis thaliana plants were grown in a growth chamber under blue, red and green light. Removal of the green light opened the stomata and restoration of green light closed them to baseline values under experim...

متن کامل

phytochrome B and PIF4 Regulate Stomatal Development in Response to Light Quantity

Stomata are pores on the surfaces of leaves that regulate gas exchange between the plant interior and the atmosphere [1]. Plants adapt to changing environmental conditions in the short term by adjusting the aperture of the stomatal pores, whereas longer-term changes are accomplished by altering the proportion of stomata that develop on the leaf surface [2, 3]. Although recent work has identifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 66 15  شماره 

صفحات  -

تاریخ انتشار 2015